5 SIS control and data acquisition with Pegasus

This section describes briefly the main procedures of the Pegasus software that are used during observations with MOS. For more informations on Pegasus, see the ``Pegasus User's Manual@''

It is now possible, from Waimea or Hale Pohaku, to open a Pegasus session and to simulate observations with SIS. We strongly recommend that new SIS users to use this facility before their run. Being accustomized to Pegasus procedures will significantly improve the efficiency of your first observing nights.

5.1 Checking the status of the instrument and starting observations

When you arrive for the first night of observation, you should find the instrument prepared in accordance with the requests you have sent (several weeks in advance of your run) to CFHT. This means that the requested CCD, filters and grisms have been installed, the internal focus has been checked for each filter, and the direction of dispersion for each grism has been precisely aligned with the columns of the CCD. You will find a ``set-up form'' summarizing this information close to the control terminal.

Also, an image of a grid mask has been taken and processed during the afternoon for the computation of orientation and distortion corrections. For precise cutting of masks and for a good match between the positions of the slits and of the objects, this step is essential. If, under exceptional circumstances, the set-up team asks for a few more minutes at the beginning of the night for checking this point, it is wise to accord them this extra time.

To start a Pegasus session, type sis after the login prompt and then type the current password (ask the TO or your support astronomer if you do not know it). The login process creates the appropriate icons and windows, including a top menubar: the Pegasus session manager (figure 5.1). The different Pegasus procedures are activated by clicking on the corresponding buttons.

When starting a run, first enter the official run number and PI identification (or ask your support astronomer to do it for you). This is important for archiving and for easy future access to your own data. The proper form is as follows:


Investigator: LEMEILLEUR

Finally, check that the disk meter indicates enough available disk space for your night. Otherwise, delete some files (see section 5.9).

5.2 SIS window: configuring the instrument

SIS control is provided through the SIS window. To open it, click the SIS button on the Pegasus menubar. The window which appears (figure 5.2) then allows the user to select new filters, grisms, or aperture masks. To do so, simply click in the appropriate box in front of the selection. Once your selection of a new SIS configuration is complete, click on ``accept''. Allow enough time for the devices to reach their positions (times add up since motions are sequential). Typical times for each move are as follows:

At the beginning of your run, check that the information contained in the SIS window agree with those on the set-up form. There is also a small ``status'' window (figure 5.3) which permanently displays a summary of the current configuration.

5.3 CAF window: Computer Aided Focussing

CAF is used to focus the telescope quickly and accurately. It is an integrated focussing sequence based on double images produced by a Hartmann mask consisting of two holes located in the pupil plane, one empty, and one with a prism. The device produces two images for each single star, whose separation in Y is linearly related to the telescope focus position.

First, select suitable stars for focussing (see section 6.6) from a test exposure. Then, to reduce the readout time, reduce the field of view by subrasterring the CCD with the FRASTER routine. Do not use subrasters smaller than 250x250 pixels - the separation between the 2 star images is more than 120 pixels.

Now, open the CAF form from the menubar (figure 5.4). Enter the exposure time and check that the zero point is set to the appropriate value given to you by your support astronomer (this should not be changed during one given run). After clicking on ``accept'', the focussing sequence starts, which means:

Now, you simply add (taking the sign into account) the suggested value to the current telescope focus by using the telescope handpaddle. Normally you need to run CAF only once. If you want to check the precision you can run CAF a second time and you should not find a focus difference larger than +/- 5 units (the accuracy depends, of course, of the actual seeing). Note: if, for any reason, you intend to run CAF several times, you will save time by setting the grism wheel to position 1 before starting the sequence.

5.4 OFFSET and SIS-Ofst windows: accurate offsetting

There are 2 procedures for offsetting: OFFSET is used when guiding with the Cassegrain bonnette and for motions up to a few arcmin; SIS-Ofst is used with the SIS guide probe for motions less than 30".

The OFFSET procedure is the following:

The SIS-Ofst procedure is the following:

5.5 RASTER and EXPOSE windows: gathering photons

The RASTER window (figure 5.8) enables the oberver to define sub-frame and binning parameters. Three configurations can be defined in advance and selected at will. To select one of these three configurations, first click in the box in front of the selection, then click on ``accept''. The selected raster is displayed in the feedback window. Do not change the raster while the EXPOSE window (see below) is open, as any changes in the raster will not take place until the EXPOSE window is closed and then opened again.

The EXPOSE window (figure 5.9) is used for defining and starting an exposure and is self explanatory. Do not forget to select the correct exposure type. It should be ``c'' for calibration frames. Since the default option is ``o'' (object), if ``c'' is not explicitely selected, the central mirror will not be in place and you will not get a calibration exposure!

Note that for sequences of identical images like biases, darks, dome flats, the ``combine'' option yields a combined frame from the individual exposures, using the IRAF/COMBINE task (see the ``Pegasus User's Manual@''). This process combines the images by using the average sigma clipping algorithm, and has been proven to provide slightly better results than a plain median algorithm (same mean value, but better r.m.s.). To select this option, click on the ``Combine data using sigma clipping'' button in the EXPOSE form before starting the sequence. A combined image will be computed as soon as the image acquisition sequence is completed, and written to the disk as a FITS file with B, F or D suffixes (capital letters) for biases, flats and darks respectively.

Before starting an exposure, it makes sense to double check the parameters of the exposure: configuration (mask, filter, grism), raster (frame size, binning), exposure type, combine option, etc.

5.6 LAMPS window: calibration unit control

The selection of calibration lamps is done before starting an exposure from the LAMPS window (figure 5.10). Simply click on the appropriate box(es) to select the lamp(s). Note that there are pairs of identical lamps: two symetrically located lamps are used to provide uniform illumination. You can select different lamps at once if needed. The lamps will be fired when you start an exposure with EXPOSE (do not forget to select ``c'' as the exposure type). See section 6.13 for the recommended calibration exposures.

5.7 CAL-SEQ window: automatic calibration sequence

N.B. CAL-SEQ has not yet been implemented for SIS.

CAL-SEQ is used to define the parameters for an automated sequence of calibration for the aperture masks. Open the CAL-SEQ form from the menubar (figure 5.11) and enter the selections for each mask. For the spectroscopic Flat-Fields, it is possible to program several iterations and record only the average. After activating the needed calibrations with the corresponding ``enable'' buttons, the whole sequence is started by clicking on ``accept''.

CAL-SEQ is usually used when you leave at the end of the night.

5.8 IMAGE and GRAPH windows: looking at the data

Normally, after each readout of the CCD, the new image is displayed as a grey scale in an SAOIMAGE window (figure 5.12). If you want to look at a previous image, click on the icon IMAGE and enter the file name: for example, 299742o.fits. Then, in the SAOIMAGE window, you can interactively adjust the grey scale levels, the scale (``histeq'' is fine for low contrast spectra, ``sqrt'' is better for direct images), zoom (option ``pan'') and so on. Do not forget to return to ``current.fits'' in IMAGE when you want an automatic display again.

With a bonnette rotation of north is normally at the top and east to the left. The image rotates clockwise with increasing bonnette angle until north is to the right for a rotation of .

The GRAPH window (figure 5.13) enables displays of cuts along rows or columns for up to 3 files simultaneously. You can enter the file numbers themselves or the aliases current.fits and previous.fits. The full capabilities of GRAPH are described in more detail in the ``Pegasus User's Manual@''.

It is possible to make hard-copies of the images displayed with IMAGE and GRAPH.

5.9 FILES window: handling data files

The FILES window (figure 5.14) is used to remove files from the disk when space is needed and to transfer files to DAT or Exabyte tapes. Normally, the observer should transfer all of the files they will need for their subsequent data processing to tapes at the end of each night or at the end of the run. Under exceptional circumstances, it is still possible to retrieve files from the optical disk in Waimea if, for some reason, useful files are missing. In such cases, ask your support astronomer for help. However, we insist this is not the normal way to save your data.

The FILES window also allows the user to read file headers, which contain a great deal of informations about the data such as object identification, coordinates, time, air mass, SIS status, CCD status, and so on.

5.10 GUIDE: guide star selection (T.O.)

This form is available to the telescope operator only. Figure 5.15 shows the interface used by the T.O. This tool provides a graphic interface for guide star selection from the list provided by the Hubble Space Telescope guide star catalogue. It gives the T.O. the X and Y positions to which the Cassegrain Bonnette mirror has to be moved to find a suitable guide star. If a given field has to be observed for several successive nights it is also possible to keep a record of the guide star position for future use.

Please send comments and suggestions regarding the HTML version of this manual to Christian Veillet.